Complex role of space in the crossing of fitness valleys by asexual populations.

نویسندگان

  • Natalia L Komarova
  • Leili Shahriyari
  • Dominik Wodarz
چکیده

The evolution of complex traits requires the accumulation of multiple mutations, which can be disadvantageous, neutral or advantageous relative to the wild-type. We study two spatial (two-dimensional) models of fitness valley crossing (the constant-population Moran process and the non-constant-population contact process), varying the number of loci involved and the degree of mixing. We find that spatial interactions accelerate the crossing of fitness valleys in the Moran process in the context of neutral and disadvantageous intermediate mutants because of the formation of mutant islands that increase the lifespan of mutant lineages. By contrast, in the contact process, spatial structure can accelerate or delay the emergence of the complex trait, and there can even be an optimal degree of mixing that maximizes the rate of evolution. For advantageous intermediate mutants, spatial interactions always delay the evolution of complex traits, in both the Moran and contact processes. The role of the mutant islands here is the opposite: instead of protecting, they constrict the growth of mutants. We conclude that the laws of population growth can be crucial for the effect of spatial interactions on the rate of evolution, and we relate the two processes explored here to different biological situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The rate at which asexual populations cross fitness valleys.

Complex traits often involve interactions between different genetic loci. This can lead to sign epistasis, whereby mutations that are individually deleterious or neutral combine to confer a fitness benefit. In order to acquire the beneficial genotype, an asexual population must cross a fitness valley or plateau by first acquiring the deleterious or neutral intermediates. Here, we present a comp...

متن کامل

Quantifying the Role of Population Subdivision in Evolution on Rugged Fitness Landscapes

Natural selection drives populations towards higher fitness, but crossing fitness valleys or plateaus may facilitate progress up a rugged fitness landscape involving epistasis. We investigate quantitatively the effect of subdividing an asexual population on the time it takes to cross a fitness valley or plateau. We focus on a generic and minimal model that includes only population subdivision i...

متن کامل

Effects of Epistasis and Pleiotropy on Fitness Landscapes

The factors that influence genetic architecture shape the structure of the fitness landscape, and therefore play a large role in the evolutionary dynamics. Here the NK model is used to investigate how epistasis and pleiotropy – key components of genetic architecture – affect the structure of the fitness landscape, and how they affect the ability of evolving populations to adapt despite the diff...

متن کامل

Intermediate Migration Yields Optimal Adaptation in Structured, Asexual Populations

Most evolving populations are subdivided into multiple subpopulations connected to each other by varying levels of gene flow. However, how population structure and gene flow (i.e., migration) affect adaptive evolution is not well understood. Here, we studied the impact of migration on asexually reproducing evolving computer programs (digital organisms). We found that digital organisms evolve th...

متن کامل

Accelerated crossing of fitness valleys through division of labor and cheating in asexual populations

Complex traits can require the accumulation of multiple mutations that are individually deleterious. Their evolution requires a fitness valley to be crossed, which can take relatively long time spans. A new evolutionary mechanism is described that accelerates the emergence of complex phenotypes, based on a "division of labor" game and the occurrence of cheaters. If each intermediate mutation le...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 11 95  شماره 

صفحات  -

تاریخ انتشار 2014